

Even though it comes up in the textbook, you don't need to know most of this for exam questions Functions are either one to one or					
it is too basic to be asked). The	, ,,		,	many to one. To have an inverse a	
doesn't pass the vertical line te	,		, , ,	graph must be one to one (pass the	
does a function now have an inv		•		horizontal line test)	
inverses in more detail later (ho	w to find inverses which is t	ne same as your GCSE knov	vieage)		
	D •	/D	0005	•	
	Basics	(Recap fron	n GCSEs		
		Intuition			
function relates an input to an o	utput. It is like a machine that				
for example, let's say the function	•				
	Input	Function	Output/Result		
	input	Relationship/Rule	Output/nesutt		
	0	× 3 then –4	3(0) - 4 = -4		
	1	× 3 then −4	3(1) - 4 = -1		
	3	\times 3 then -4	3(3) - 4 = 5		
	8	\times 3 then -4	3(8) - 4 = 20		
	•••		•••		
	x	\times 3 then -4	3(x) - 4 = 3x -	4	
		Notation			
irst of all, it is useful to give a fun	ction a name.				
			me: can you at least cur teacher;	ve my grade?	
he most common name is " f ",	but we can have other nam	es like " $oldsymbol{g}$ " or even " $oldsymbol{dog}$.	"		
			 		
			_ <i> </i>		
			J		
otation:					
f(x) = " is the most commo	n choice way of writing a fu	•		letter)	
		f(x) =	= 3x - 4		
			\	\.	
		function name	re	lationship/rule	
			input		
	We	read this as: "f of x" equals	3x - 4		
	Th:	Andreas and a state of the state of	dale en endeamente de		
wo important things to note:	i nis means f	takes x, multiplies it by 3 an	u trien subtracts 4		

The most common name of a function is "f", but there are also other commonly used names like "g" or "h". They all mean the same thing as y. It is

 $f(\mathbf{a}) = 1 - \mathbf{a}^2 + \mathbf{a}^3$

 $g(x) = x^2$

 $h(x) = x^2$ We don't need to always use the letter "x" inside the bracket, it is just a place-holder, so don't get too concerned about "x", it is just there to show us

important to make sure you understand that we don't have to give a function a name, we can also just call it y.

nere the input goes and what happens to it. It could be anything!

Basics (Recap from GCSEs Continued	d)
Example 1 (very basic)	
$f(x) = 3x - 4. \operatorname{Find} f(5)$	
Let's colour code to explain better	
f(x) = 3x - 4	
 In English, f(5) is saying what is the value of f when x = 5 which we can find by using a given function f Input 5 	ven rule
• Relationship/rule is $3x - 4$	Reflection: You should now
We plug the input 5 into the relationship/rule $3x - 4$ for the function f to find the output which is the solution to the question	understand that function relates an input to an output – it's just a rule that
f(5) = 3(5) - 4	takes an input of x and "spits" out a y
= 11	value. Just think of a function as saying, give me an x value and I'll

Notice how we end up with an output/solution of 11 In summary, to find the value of the function at the point x = 5, we plugged the value of 5 into the relationship

	A function just lates an input to an output by using its rule				
	Example 2	Example 3	Example 4:	Example 5: With harder algebra	
$f(x) = x^2 + 2x - 3$ i.Find $f(3)$		f(x) = 5 + x Solve $f(a) = 7$	$g(x) = \frac{1}{x+3}$	$f(x) = \frac{2x}{3x+5}, g(x) = \frac{3}{x+4}.$	
	ii.Solve $f(x) = 5$		Given that $g(a) = \frac{1}{10}$, find a	Solve $f(x) = g(x)$	
	$f(x) = x^2 + 2x - 3$ i.	f(x) = 5 + x	$g(x) = \frac{1}{x+3}$	$f(x) = \frac{2x}{3x+5}, g(x) = \frac{3}{x+4}.$	
	Find $f(3)$	First work out what $f(a)$ is by putting a in place of x	First work out what $g(a)$ is by	I will colour code in a less detailed way now as you should understand	
	Replace every x in the rule for the function with 3		putting a in place of x	the topic by now $f(x) = g(x)$	
	$f(3) = 3^2 + 2(3) - 3$	f(a) = 5 + a	$g(a) = \frac{1}{a+3}$	$\frac{2x}{3x+5} = \frac{3}{x+4}$	
	= 12	We can now solve	We can now solve	$\frac{3x+5}{3x+5} = \frac{1}{x+4}$ Multiply both sides by $(3x+5)$ and	
	f(x) = 5	f(a) = 7	$g(a) = \frac{1}{10}$	(x+4) in order to get rid of the	
╛	Here we are given the output and need to work backwards	5 + a = 7		fractions $(x+4)(2x) = 3(3x+5)$	
	Replace $f(x)$ with it's relationship/rule	a = -2		Then we expand the brackets and use your knowledge of solving quadratics	
	$x^2 + 2x - 3 = 5$ $x^2 + 2x - 8 = 0$			$2x^2 + 8x = 9x + 15$ $2x^2 - x - 15 = 0$	
	(x-2)(x+4) = 0 x = 2, -4			(2x+5)(x-3) = 0 x = -2.5,37	
	Example 6: With logarithms	Example 7: With logarithms	Example 8: With exponentials	Example 9: With exponentials	
	$f(x) = 4lnx^2$ Find $f(e^2)$	$f(x) = 5 + \ln\left(\frac{1}{x}\right)$ Find $f(e^2)$	$f(x) = 5e^{2x}$ Find $f(ln3)$	$f(x) = e^{-2x} - 3$ Find $f(ln3)$	
	$f(x) = 4\ln x^2$	$f(x) = 5 + \ln\left(\frac{1}{x}\right)$	$f(\ln 3) = 5e^{2\ln 3} = 5e^{\ln 9}$	$e^{-2\ln 3} - 3 = e^{\ln \frac{1}{9}} - 3$	
	$f(e^2) = 4\ln(e^2)^2 = 4\ln e^4 = 16\ln e = 16$	$f(e^2) = 5 + \ln\left(\frac{1}{e^2}\right)$	= 5(9) = 45	$=\frac{1}{9}-3$	
		$= 5 + \ln e^{-2}$ = 5 - 2 \ln e		$=-\frac{26}{9}$	

Composite Functions

A composite function is a function applied to another function. This typically looks like fg(2) or gf(2) or gf(x). The latter two might seem scary since there are no numbers, but going through example 1 part ii. below will clear this up.

Always work from right to left

Don't confuse repeated composition and

derivatives $f^2(x) = f(f(x))$ not f''(x)

Following the examples will give you the best insight on this.				
Example 1:	Example 2:	Example 3:	Example 4:	
$f(x) = x^3 + 1, g(x) = x - 1$ Find i. $fg(2)$ ii. $fg(x)$ iii. $(f \circ f \circ f)(1)$	$g(x) = \frac{1}{x-2}, h(x) = \frac{2x+1}{3x+4}$ Find i. $gh(1)$ ii. $hg(x)$	$f(x) = \frac{2}{x}, g(x) = \frac{x+1}{x}$ Solve $gf(a) = 3$	$f(x) = 2x - 3, g(x) = x^2 + 2$ Solve $fg(x) = gf(x)$	
i. $fg(2)$ Do inside function: $g(2) = 2 - 1 = 1$ Put this into the outside function f	i. $gh(1)$ Do inside function: $h(1) = \frac{3}{7}$	gf(a) = 3 Let's work out LHS first	Here we have a composite function on both sides Let's work out each side	
$f(1) = 1^3 + 1 = 2$ ii. $fg(x)$ Inside function is $g(x) = x - 1$	Put this into outside function $g\left(\frac{3}{7}\right) = \frac{1}{\frac{3}{7-2}} = \frac{7}{3-14} = -\frac{7}{11}$	$f(a) = \frac{2}{a}$ $g\left(\frac{2}{a}\right) = \frac{\frac{2}{a} + 1}{\frac{2}{a}}$	$fg(x) = gf(x)$ LHS: $fg(x) = 2(x^2 + 2) - 3 = 2x^2 + 1$	
There is nothing to simplify first, since it is terms of x. Put this into the outside function. Don't let the fact that we don't have a number now confuse you.	ii. $hg(x)$ Nothing to do to inside function $g(x) = \frac{1}{x-2}$	$\frac{g(a) - \frac{2}{a}}{a}$ Given $gf(a) = 3$	RHS: $gf(x) = (2x - 3)^{2} + 2$ $= 4x^{2} - 12x + 11$	
Everywhere we see an x in the outside function we write $x - 1$ $f(x - 1) = (x - 1)^3 + 1$	$h\left(\frac{1}{x-2}\right)$ $=\frac{2\left(\frac{1}{x-2}\right)+1}{3\left(\frac{1}{x-2}\right)+4}$	$\frac{\frac{2}{a}+1}{\frac{2}{a}}=3$	Given $fg(x) = gf(x)$ $2x^2 + 1 = 4x^2 - 12x + 11$	
iii. $(f \circ f \circ f)(1)$ $f(1) = 1^3 + 1 = 2$ $f(2) = 2^3 + 1 = 9$ $f(9) = 9^3 + 1 = 730$	$3\left(\frac{1}{x-2}\right) + 4$ $= \frac{2 + (x-2)}{3 + 4(x-2)}$ $= \frac{x}{4x-5}$	$\Rightarrow a = 4$	$2x^2 - 12x + 10 = 0 \Longrightarrow x = 1,5$	
Example		Fxample	l : 6: Harder Algebra	

$f(2) = 2^{3} + 1 = 9$ $f(9) = 9^{3} + 1 = 730$	$= \frac{\chi}{\chi}$		
Example	4x - 5	Example 6: H	larder Algebra
$g(x) = x^2 + 3, h(x) = 2x + 2$. Solve $gh(x) = 2hg(x) + 15$			$x, x \in \mathbb{R}, x \neq -1$
gh(x) = 2hg Let's work out LHS first: $gh(x) = (2x - 1)$ Now let's work out the RHS: $2hg(x) + 1$	- 2) ² + 2		ays do. $F(x)$ $= \frac{3(\frac{3x-5}{x+1}) - 5}{\frac{3x-5}{x+1} + 1}$
Let's first find the part $h(g(x))$. We will co $g(x) = x^2$ $hg(x) = 2(x^2$	slour code as $hg(x)$	Way 1: Multiply all terms by $x + 1$ to kill the fractions quickly	Way 2: get a common denominator
So, $2hg(x) + 15 = 2[2(x - y)]$ $gh(x) = 2hg(x) + 15 \text{ becomes}$	2+3)+2]+15	$=\frac{3(3x-5)-5(x+1)}{3x-5+(x+1)}$	$=\frac{\left(\frac{3(3x-5)}{x+1} - \frac{5(x+1)}{x+1}\right)}{\frac{3x-5}{x+1} + \frac{x+1}{x+1}}$
Simplifying and solving $4x^2 + 8x + 7 = 2(2x + 2x + 4x + 8x + 7) = 4x^2 + 8x + 7 = 4x + 7 =$	$x^{2} + 6 + 2 + 15$ $2x^{2} + 8 + 15$ $x^{2} + 16 + 15$	$= \frac{9x - 15 - 5x - 5}{4x - 4}$ $= \frac{4x - 20}{4x - 4}$ $= \frac{x - 5}{x - 1}$	$=\frac{4x-20}{\frac{x+1}{4x-4}}$ $=\frac{4x-20}{4x-4}$ $x-5$
ou should now understand the following mer	nes \odot $f(x) = \bigcap_{x \in \mathbb{R}^n} f(x)$:		$=\frac{x-5}{x-1}$ $=-5$

Watch out for different notations f(g(x))These all mean the same thing

 $(f \circ g)(x)$ $f \circ g(x)$ fg:xNote: • is **not** a filled in dot, so doesn't mean multiply Also be aware that $f^2(x) = f(f(x))$. Don't confuse this with the derivative where $f^{(2)}(x) = f''(x)$

An Important Deeper Understanding of Functions

Fact 1: Any function can just be replaced with the letter y': y is typically used to represent the **output value** of a function. So f(x) can be replaced with y. $f(x) = x^2$ can also be written as $y = x^2$ $g(x) = x^2$ can also be written as $y = x^2$ $h(x) = x^2$ can also be written as $y = x^2$ Careful though: This does not mean that f(x), g(x) and h(x) are the same functions since they are all equal to y above. It just means both

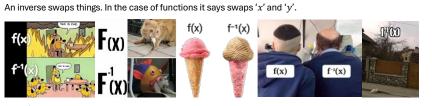
functions are being plotted on the y-axis (hence the y = since y is the axis name), Know that we only do this if finding the inverse or for graphing. So, going back to our very first example, f(x) = 3x - 4 can also be written as y = 3x - 4 and then graphed as usual.

Fact 2: More confusing notations used:

You may also see written in other less common ways using colons and arrows instead of brackets and equals signs. Therefore f(x) = 3x - 4 can be written as $f: x \mapsto 3x - 4$ or

Inverses

Inverse Functions – Finding Them



Replace function with y. Then swap x and y and then re-arrange to make y the subject

The notation for the inverse is $f^{-1}(x)$. The **superscript** -1 tells us that we are finding the inverse of function f, it **does NOT mean a power of** -1

• Step 1: Replace function with y since f(x) means the same thing as y

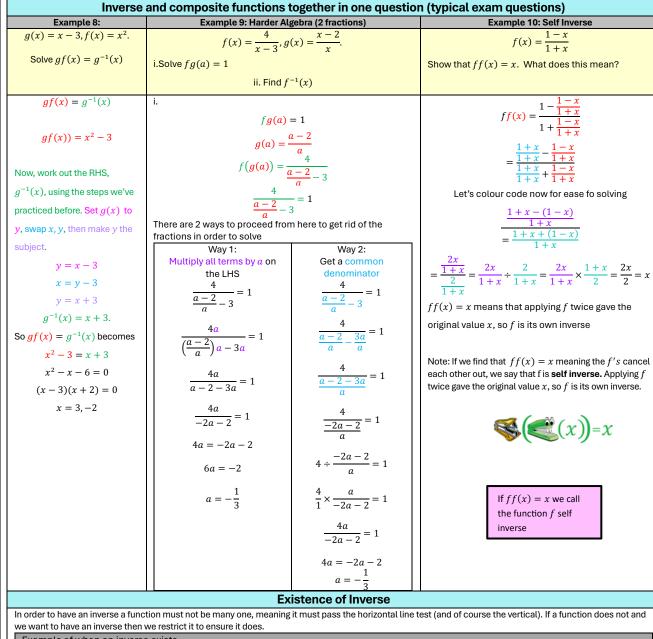
Step 2: Swap x and y• Step 4: Replace the y found in step 3 with $f^{-1}(x)$

step 2. Instead they go straight to step 3 and instead make x the subject in step 3 and then swap the letters at the very end. This is also ok.

So, the above steps just answer the question, given a function f(x), how do I find $f^{-1}(x)$?

Example 1	Example 1	Example 3: Two terms with y (factorise)	Example 4: With logarithms
$f(x) = \sqrt{2x - 5}. \text{ Find}$ $f^{-1}(x)$	$f(x) = 3x^2 - 5$. Find $f^{-1}(x)$	$f(x) = \frac{2-x}{4+x}. \text{ Find } f^{-1}(x)$ 24	$f(x) = \ln(x+2) + \ln 2, x \ge -5$ Find $f^{-1}(x)$
eplace the function $(x) \text{ with } y$ $y = \sqrt{2x - 5}$	Replace the function $f(x)$ with y $y = 3x^2 - 5$	Replace function with y $y = \frac{2 - x}{4 + x}$ Swap x and y	$f(x) = \ln(x + 2) + \ln 2$ $\ln(y + 2) + \ln 2 = x$ $\ln(2y + 4) = x$ $2y + 4 = e^{x}$
wap x and y $y = \sqrt{2x - 5}$ $x = \sqrt{2y - 5}$ Itake y the subject. We	Swap x and y $y = 3x^2 - 5$ becomes $x = 3y^2 - 5$	$x = \frac{2 - y}{4 + y}$ Now, make y the subject. We	$y = \frac{e^{x} - 4}{2}$ $f^{-1}(x) = \frac{e^{x} - 4}{2}$
square both sides to get rid of the square root $x^2 = 2y - 5$	Make y the subject. We need to get y^2 on its own before taking the square	now have two y's. The way to deal with this is to then move all the terms with y's onto one side	Example 5: With exponentials $f(x) = e^{x+3}.$
$y = \frac{x^2 + 5}{2}$ $f^{-1}(x) = \frac{x^2 + 5}{2}$	root $3y^2 = x + 5$ $y^2 = \frac{x+5}{3} \implies y = \pm \sqrt{\frac{x+5}{3}}$	to be able to factorise y out and hence get y on its own.	Find $f^{-1}(x)$ $f(x) = e^{x+3}$
$f^{-1}(x) = \frac{x+3}{2}$	$y = \frac{1}{3} \implies y = \pm \sqrt{\frac{3}{3}}$ Note that we need to restrict the domain of this	x(4+y) = 2 - y $4x + xy = 2 - y$ $xy + y = 2 - 4x$	$x = e^{y+3}$
Note: $f^{-1}(x) = \frac{-x^2 - 5}{-2}$ is	function $y = 3x^2 - 5$ to $x \ge 0$, as this function is	$y(x+1) = 2 - 4x y = \frac{2 - 4x}{x+1}$	$\ln x = y + 3$
lso an acceptable nswer	not one-to-one (or we could restrict the domain to $x < 0$, and take the	$y = \frac{2 - 4x}{x + 1}$ $f^{-1}(x) = \frac{2 - 4x}{x + 1}$ Note: $\frac{4x - 2}{x}$ is also an accordable.	$y = \ln x - 3$ $f^{-1}(x) = \ln x - 3$
	negative square root). $f^{-1}(x) = \sqrt{\frac{x+5}{2}}$	Note: $\frac{4x-2}{-x-1}$ is also an acceptable answer	

	$f^{-1}(x) = \sqrt{\frac{x+5}{3}}$			
	quadratic formula or complete the squa of $f(x) = 1 + x - 2x^2$	are) Example 7: Solving with inverse $g(x) = \frac{4x}{2-x}, f(x) = 2x - 5$. Given that $x > 3$. Solve $g^{-1}(x) = f(x)$		
		3 2		
	s and $y's$ to get $x = 1 + y - 2y^2$, but ofter? We can't factorise y out from all	Way 1:	Way 2: Clever way	
9 9	We have no option but to complete the	$g^{-1}(x) = f(x)$	Remembering that $gg^{-1}(x) = x$, as the	
square or use quadratic formula.	I	First, let's work out	inverses. We can apply g to both sides g	
Way 1: Complete the square	Way 2: Use Quadratic Formula (shorte	$g^{-1}(x)$,	the equation $g^{-1}(x) = f(x)$.	
$x = -2\left(y^2 - \frac{1}{2}y - \frac{1}{2}\right)$	Re-arrange first to get 0 on one side	$y = \frac{4x}{3-x}$	$gg^{-1}(x) = gf(x)$	
$x = -2\left[\left(y - \frac{1}{4}\right)^2 - \frac{1}{16} - \frac{1}{2}\right]$	$2y^2 - y + x - 1 = 0$	$y = \frac{1}{3-x}$	The inverses on the LHS cancel	
г , т	a = 2, b = -1, c = x - 1	$x = \frac{4y}{3-y}$	x = gf(x)	
$=-2\left[\left(y-\frac{1}{4}\right)^2-\frac{9}{16}\right]$	u - 2, b - 1, t - x 1	x(3-y) = 4y	Now, let's work out the RHS $gf(x)$.	
$x = -2\left(y - \frac{1}{4}\right)^2 - \frac{9}{8}$	$y = \frac{1 \pm \sqrt{(-1)^2 - 4(2)(x-1)}}{2(2)}$	3x - xy = 4y	4(f(x))	
Re-arrange for y	2(2)	4y + xy = 3x	$gf(x) = g(f(x)) = \frac{4(f(x))}{3 - f(x)}$	
$2\left(y-\frac{1}{4}\right)^2=-x+\frac{9}{8}$	1 + √ 9α + 0	v(4+x) = 3x	$=\frac{4(2x-5)}{3-(2x-5)}$	
\ 4/ 0 9	$y = \frac{1 \pm \sqrt{-8x + 9}}{4}$			
$\left(y - \frac{1}{4}\right)^2 = \frac{-x + \frac{9}{8}}{2}$	$1 \pm \sqrt{-9x \pm 9}$	$y = \frac{3x}{4+x}$	$=\frac{8x-20}{8-2x}$	
$y - \frac{1}{4} = \pm \sqrt{\frac{-x + \frac{9}{8}}{2}}$	$f^{-1}(x) = \frac{1 \pm \sqrt{-8x + 9}}{4}$		We substitute it into the equation	
$y - \frac{1}{4} = \pm \sqrt{\frac{8}{2}}$		$\frac{3x}{4+x} = 2x - 5$	x = gf(x).	
$y = \frac{1}{4} \pm \sqrt{\frac{-8x+9}{16}}$		1 1 2		
V		$3x = (2x - 5)(4 + 3)$ $3x = 8x + 2x^2 - 20$	$\lambda = 8 - 2r$	
$=\frac{1\pm\sqrt{-8x+9}}{4}$			x(8 - 2x) = 8x - 20	
We need the inverse to exist so	*	5 <i>x</i>	$8x - 2x^2 = 8x - 20$	
since the function cannot be m		$2x^2 - 20 = 0$	$-2x^2 = -20$	
f^{-1} ($f(x) = \frac{1 + \sqrt{-8x + 9}}{4}$	$x^2 = 10$	$x^2 = 10$	
Unless you limit the domain of j	f(x) of course (this is covered in the	$x = \pm \sqrt{10}$	$x = \pm \sqrt{10}$	
domain and range cheat sheet). For example,		But question says	_	
Domain $\left(-\infty, \frac{1}{4}\right]$ has inverse:		x > 3	But, question says $x > 3$,	
$f^{-1}(x) = \frac{1 - \sqrt{9 - 8x}}{4}$		$x = \sqrt{10}$	$x = \sqrt{10}$	
Domain $\left[\frac{1}{4}, -\infty\right)$ has inverse:	4			
E4	$f^{-1}(x) = \frac{1 + \sqrt{9 - 8x}}{4}$			
The question will tell you what t	4			
which to choose (if not just cho	. ,			
We can't have both since then t If the question doesn't tell you j	-			
	and composite functions toget	 :	//	



We want the graph to pass the horizontal test to have an inverse (be one to one not many to one) [-2, -1][-1,1] [1,4] The largest domains is [1,4] Find the largest domain such that the inverse exists Notice how [-2,1] and [-2,3] don't work since the horizontal line would cross twice

